Assembly sequence optimization using a flower pollination algorithm-based approach

نویسندگان

  • Atul Mishra
  • Sankha Deb
چکیده

One of the important decisions in assembly process planning is determination of assembly sequence. Choice of the optimum sequence is made difficult due to various reasons. There are various precedence constraints and optimization criteria. Moreover, a product may be possible to assemble in many alternative ways following different sequences, thus making assembly sequence optimization a multi-modal optimization problem with multiple optimum solutions. It is necessary to generate as many unique optimum solutions as possible in order to allow the process planner to take a decision. Moreover, with increase in part count, the number of feasible sequences rises staggeringly, thereby making assembly sequence optimization laborious and time consuming. Most conventional mathematical algorithms are known to perform poorly when used to obtain multiple optimum solutions. On the other hand, soft computing based evolutionary optimization algorithms are good candidates for multi-modal optimization. Another challenge is to develop an algorithm that can automatically maintain diversity in the optimum solutions found over the generations (i.e. optimum solutions having the same fitness but unique). Keeping the above in mind, in the present paper, an intelligent assembly sequence optimization methodology based on application of flower pollination algorithm (FPA) has been developed to automatically generate multiple unique optimal assembly sequences, subject to various precedence constraints, based on minimisation of number of orientation changes and tool changes. Since in the present paper, FPA has been applied for the first time to a discrete optimization B Sankha Deb [email protected] 1 FMS and CIM Lab, Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India problem like assembly sequence optimization, themain challenge before us in applying FPAwas the continuous nature of the original FPA. Therefore, modifications have been made by us in the rules for local and global pollination of FPA to make it suited for solving the given discrete optimization problem. In order to evaluate the performance of FPA, the results have been compared with two other well-known soft computing techniques namely, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) and also with a recently published soft computing based algorithm, Improved Harmony Search (IHS). It was found that the novelty of the proposed FPA lies in its capability to find multiple unique optimum solutions in one single simulation run and capability to automatically maintain diversity in the optimum solutions found over the generations. On the other hand, in case of GA, ACO and IHS, it is not possible to maintain the diversity in multiple optimum solutions as the complete population finally converges to a few unique optimum solutions. Therefore, it can be concluded that FPAperforms better in solving the given multi-modal optimization problem of assembly sequence optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems

Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...

متن کامل

Online Distribution and Load Balancing Optimization Using the Robin Hood and Johnson Hybrid Algorithm

Proper planning of assembly lines is one of the production managers’ concerns at the tactical level so that it would be possible to use the machine capacity, reduce operating costs and deliver customer orders on time. The lack of an efficient method in balancing assembly line can create threatening problems for manufacturing organizations. The use of assembly line balancing methods cannot balan...

متن کامل

Hybrid data clustering approach using K-Means and Flower Pollination Algorithm

Data clustering is a technique for clustering set of objects into known number of groups. Several approaches are widely applied to data clustering so that objects within the clusters are similar and objects in different clusters are far away from each other. K-Means, is one of the familiar center based clustering algorithms since implementation is very easy and fast convergence. However, K-Mean...

متن کامل

Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over

Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016